The hydrogen economy is an emerging concept that envisions hydrogen playing a key role alongside renewable electricity to reduce greenhouse gas emissions and achieve a sustainable energy future. While most hydrogen today is produced from natural gas, emitting CO2 in the process, the goal is to transition to low-carbon hydrogen made using renewable power or natural gas with carbon capture. Hydrogen holds the potential to decarbonize sectors that are challenging to electrify, including heavy industry, long-distance transportation, and long-term energy storage. In heavy industry, hydrogen could replace fossil fuels in high-temperature processes, serve as a feedstock for green ammonia and chemicals, and potentially replace coal in steelmaking. Hydrogen is envisioned for transportation in shipping, aviation, and heavy trucks via hydrogen-derived synthetic fuels and fuel cell technology.
Role of Valve in Hydrogen Economy
Valves play a crucial role in the hydrogen economy by ensuring the safe and efficient handling of hydrogen gas. Hydrogen valves are engineered to endure the distinctive characteristics of hydrogen, such as its low density and high diffusivity. They are used throughout the hydrogen value chain, from production and transportation to end-use applications. Emerson's Fisher control valves have been used in a variety of hydrogen applications, gaseous as well as liquid. Control valve designs are available for cryogenic to high-temperature hydrogen applications from ANSI CL150-2500 with higher pressures possible depending on the application. These control valves are designed to be used in any blend application from low natural gas blend rate to 100% hydrogen. One of the key considerations in designing hydrogen valves is the operating pressure. Valves used in hydrogen applications can be subjected to extremely high pressures, ranging from 413 bar for high-pressure ball valves to even higher pressures in specialized applications. To ensure safety and reliability, these valves must be made from materials compatible with hydrogen and can withstand the expected temperatures and pressures without leaking or deformation.
Below are the typical conditions that a hydrogen valve should have:
Pressures: H2 must be stored in on-vehicle tanks at pressures ranging from 350 to 700 bar to attain the desired density.
Stress and vibration: Systems must endure high speeds, rough terrain, and adverse weather conditions.
Safety: Refueling stations must be designed to be safely operable by the average consumer.
Maintenance: Ability to effortlessly recreate leak-tight joints during servicing.
Type of Valve Used in Hydrogen Application
Hydrogen valves come in various types, each designed to handle the unique challenges of hydrogen gas. The most common types include:
· Other valve types like gate, globe, and butterfly valves are also used in various hydrogen applications.
Proper material selection, pressure rating, and compatibility with hydrogen fittings are critical considerations when choosing hydrogen valves to ensure safe and reliable operation.
Factor driving and challenging the market
The hydrogen valve market is set for substantial growth, propelled by the rising demand for clean energy solutions and the necessity to reduce greenhouse gas emissions. Two key factors driving the market are:
Growing adoption of hydrogen fuel cell systems: The demand for on-board hydrogen supply fuel cell systems in vehicles is rising, particularly in heavy-duty applications like buses and trucks. This fuels the need for reliable and efficient hydrogen valves to ensure safe and controlled gas flow.
Expansion of hydrogen refueling infrastructure: As countries invest in building hydrogen refueling networks, the need for hydrogen valves in hydrogenation stations is increasing. Valves are critical components in these stations, ensuring the proper handling and dispensing of hydrogen fuel.
However, the hydrogen valve market also faces several challenges:
Material compatibility and embrittlement: Hydrogen can cause embrittlement in certain materials, leading to valve failures. Choosing the correct materials is vital to guarantee long-term reliability and safety.
Lack of standardization and regulations: The absence of global standards and regulations for hydrogen valves can create uncertainty and slow market adoption. Developing common guidelines and certifications will help build confidence in the technology and drive further growth.
Overcoming these challenges through continued innovation, material research, and policy support will be key to unlocking the full potential of the hydrogen valve market and accelerating the transition to a clean hydrogen economy.
The hydrogen valve market is experiencing significant growth, driven by factors such as the growing adoption of hydrogen fuel cell systems and expanding hydrogen refueling infrastructure. The market is expected to reach around USD 1 billion by 2030, with growth at a CAGR of more than 10%. Companies such as Parker, Emerson, Flowserve, and others are dedicatedly involved in the ecosystem by providing dedicated valves for hydrogen applications.
Hydrogen Valve Market (2023-2030) USD Billion
This detailed research study will help the client answer the following questions:
Hydrogen Valve Companies
If you are looking for more detailed research on the Hydrogen Valve Market
Hydrogen Valve Market by Type (Ball, Needle, Check, Pressure Relief, Flow Control, Shut Off, Globe, and Tank Valves), Application (Fueling Station, Production & Storage, Transportation, and Fuel Cells), Industry and Region – Global Forecast to 2029
Contact:
Mr. Aashish Mehra
MarketsandMarkets™ INC.
630 Dundee Road
Suite 430
Northbrook, IL 60062
USA : 1-888-600-6441
[email protected]
This FREE sample includes market data points, ranging from trend analyses to market estimates & forecasts. See for yourself.
SEND ME A FREE SAMPLE