We use cookies to enhance your experience. By continuing to visit this site you agree to our use of cookies . More info.
X

Al-Driven Predictive Maintenance Market

Al-Driven Predictive Maintenance Market by Solution (Integrated Solution, Standalone Solution), Deployment Mode (Cloud, On-premises), Technique (Vibration Analysis, Infrared Thermography, Oil Analysis), Organization Size, Industry - Global Forecast to 2030

Report Code: UC-SE-6886 Jun, 2025, by marketsandmarkets.com

The predictive maintenance market driven by AI technology continues to grow substantially because industries are adopting advanced solutions, including IoT, ML, and AI technologies. Through advanced AI analytical solutions, organizations use historical and present-day data inputs to determine when equipment will fail ahead of time. The predictive maintenance procedure decreases operational delays and overall equipment performance while optimizing operational expenditures. AI-driven predictive maintenance solutions are rapidly gaining commercial interest because industries actively seek better productivity and improved asset performance.

The market offers integrated solutions and standalone solutions to address different customer requirements. Integrated solutions connect with already existing systems, whereas standalone solutions operate independently. These solutions became popular in the manufacturing and aerospace industries due to their need for complex machinery requirements. Companies operating small businesses often select standalone predictive maintenance solutions over other options because these systems offer independent capabilities. Machinery durability improves while maintenance expenses decrease when these solutions collaborate.

Several industries, such as energy & utilities, oil & gas, automotive & transportation, aerospace, manufacturing, healthcare, and telecommunications, utilize predictive maintenance systems powered by AI technologies. AI-driven predictive maintenance automotive industries to track vital vehicle components that leads to better results for fleet operations while preventing unplanned equipment failure. The aerospace sector employs these solutions to efficiently maintain aircraft systems, decreasing the probability of aircraft failures in flight. The manufacturing sector adopts predictive maintenance systems to manage production stations and minimize machine stoppages, which benefits operational productivity. Predictive maintenance plays a vital role in healthcare in sustaining the unhampered operation of medical equipment and diagnostic tools, which results in better patient care.

The AI-driven predictive mainteance market continues to grow immediately in regions with strong industrial growth, including North America, Europe, and Asia Pacific. North American industries' growing need for enhanced operational efficiency through digital transformation strategies requires predictive maintenance solutions. The European market is experiencing increasing growth due to manufacturing automation and the ongoing implementation of Industry 4.0 technology. Predictive maintenance implementation has experienced rapid growth across Asia-Pacific owing to rising automotive, electronics manufacturing, and telecommunications sectors.

Hence, the AI-driven predictive maintenance market will experience persistent growth because industrial facilities focus on asset performance optimization, cost-efficient maintenance, and operational improvements.

The major players in the AI-driven predictive maintenance market are Siemens (Germany), GE Vernova (US), SAP SE (Germany), C3.ai, Inc. (US), and ABB (Switzerland).

Exclusive indicates content/data unique to MarketsandMarkets and not available with any competitors.

TABLE OF CONTENTS
 
1 Introduction 
    1.1. Study Objectives  
    1.2. Market Definition and Scope 
           1.2.1. Inclusions and Exclusions
    1.3. Study Scope 
           1.3.1. Markets Covered
           1.3.2. Geographic Segmentation
           1.3.3. Years Considered for the study
    1.4. Currency 
    1.5. Limitations 
    1.6. Stakeholders 
 
2 Research Methodology 
    2.1. Research Data 
           2.1.1. Secondary Data
                    2.1.1.1. Major Secondary Sources
                    2.1.1.2. Key Data from Secondary Sources
           2.1.2. Primary Data
                    2.1.2.1. Primary Interviews with Experts
                    2.1.2.2. Key Data from Primary Sources
                    2.1.2.3. Key Industry Insights
                    2.1.2.4. Breakdown of Primaries
    2.2. Market Size Estimation 
           2.2.1. Bottom-Up Approach 
                    2.2.1.1. Approach for Capturing Market Share by Bottom-Up Analysis (Demand Side)
           2.2.2.  Top-Down Approach
                    2.2.2.1. Approach for Capturing Market Share by Top-Down Analysis (Supply Side)
    2.3. Market Breakdown and Data Triangulation 
    2.4. Research Assumptions 
    2.5. Risk Assessment 
    2.6. Limitations of Research 
 
3 Executive Summary 
 
4 Premium Insights 
 
5 Market Overview 
    5.1. Introduction 
    5.2. Market Dynamics 
    5.3. Trends/Disruptions Impacting Customer’s Business 
    5.4. Pricing Analysis 
           5.4.1. Average Selling Price Trend of Key Players, By Solution
           5.4.2. Average Selling Price Trend, By Region
    5.5. Value Chain Analysis 
    5.6. Ecosystem Analysis 
    5.7. Technology Analysis 
    5.8. Patent Analysis 
    5.9. Trade Analysis 
    5.10. Key Conferences and Events (2024-2025) 
    5.11. Case Study Analysis 
    5.12. Investment and Funding Scenario 
    5.13. Regulatory Landscape 
           5.13.1. Regulatory Bodies, Government Agencies, and Other Organizations
           5.13.2. Regulatory Framework
    5.14. Porters Five Force Analysis 
           5.14.1. Threat from New Entrants
           5.14.2. Threat of Substitutes
           5.14.3. Bargaining Power of Suppliers
           5.14.4. Bargaining Power of Buyers
           5.14.5. Intensity of Competitive Rivalry
    5.15. Key Stakeholders and Buying Criteria 
           5.15.1. Key Stakeholders in Buying Process
           5.15.2. Buying Criteria
    5.16. Impact of Artificial Intelligence on AI-Driven Predictive Maintenance Market 
 
6 AI-Driven Predictive Maintenance Market, By Solution 
    6.1. Introduction 
    6.2. Integrated Solution 
    6.3. Standalone Solution 
 
7 AI-Driven Predictive Maintenance Market, By Deployment Mode 
    7.1. Introduction 
    7.2. Cloud 
    7.3. On-premises 
 
8 AI-Driven Predictive Maintenance Market, By Organization Size 
    8.1. Introduction 
    8.2. Large Enterprises 
    8.3. Small and Medium-Sized Enterprises 
 
9 AI-Driven Predictive Maintenance Market, By Technique 
    9.1. Introduction 
    9.2. Vibration Analysis 
    9.3. Infrared Thermography 
    9.4. Acoustic Monitoring 
    9.5. Oil Analysis 
    9.6. Motor Circuit Analysis 
    9.7. Other Techniques 
 
10 AI-Driven Predictive Maintenance Market, By Industry 
     10.1. Introduction  
     10.2. Energy & Utilities 
     10.3. Oil & Gas 
     10.4. Food & Beverages 
     10.5. Automotive & Transportation 
     10.6. Aerospace  
     10.7. Manufacturing 
     10.8. Healthcare 
     10.9. Telecommunications 
     10.10. Others 
 
11 AI-Driven Predictive Maintenance Market, By Region  
     11.1. Introduction 
     11.2. North America 
             11.2.1. Macro-Economic Outlook 
             11.2.2. US
             11.2.3. Canada
             11.2.4. Mexico
     11.3. Europe 
             11.3.1. Macro-Economic Outlook 
             11.3.2. Germany
             11.3.3. UK
             11.3.4. France
             11.3.5. Italy
             11.3.6. Spain
             11.3.7. Netherlands
             11.3.8. Switzerland
             11.3.9. Rest of Europe
     11.4. Asia Pacific 
             11.4.1. Macro-Economic Outlook 
             11.4.2. China
             11.4.3. Japan
             11.4.4. India
             11.4.5. South Korea
             11.4.6. Australia
             11.4.7. Indonesia
             11.4.8. Rest of Asia Pacific
     11.5. RoW 
             11.5.1. Macro-Economic Outlook
             11.5.2. Middle East 
             11.5.3. Africa
             11.5.4. South America
 
12 AI-Driven Predictive Maintenance Market, Competitive Landscape 
     12.1. Introduction 
     12.2. Key player strategies/right to win 
     12.3. Revenue Analysis 
     12.4. Market Share Analysis 
     12.5. Company Valuation and Financial Metrics 
     12.6. Brand/Product Comparison 
     12.7. Company Evaluation Matrix: Key Players, 2024 
             12.7.1. Stars
             12.7.2. Emerging Leaders
             12.7.3. Pervasive Players
             12.7.4. Participants
             12.7.5. Company Footprint: Key Players, 2024
     12.8. Company Evaluation Matrix: Startups/SMEs, 2024 
             12.8.1. Progressive Companies
             12.8.2. Responsive Companies
             12.8.3. Dynamic Companies
             12.8.4. Starting Blocks
             12.8.5. Competitive Benchmarking: Startups/SMEs, 2024 
                        12.8.5.1. Detailed List of Key Startups/SMEs
                        12.8.5.2. Competitive Benchmarking of Key Startups/SMEs
     12.9. Competitive Situation and Trends 
 
13 AI-Driven Predictive Maintenance Market, Company Profiles  
     13.1. Key Players 
             13.1.1. ABB
             13.1.2. Microsoft
             13.1.3. SAP SE
             13.1.4. Siemens.
             13.1.5. Infinite Uptime Inc.
             13.1.6. C3.ai, Inc.
             13.1.7. AVEVA?Group
     13.2. Other Players  
 
14 Appendix 
     14.1. Discussion Guide 
     14.2. Knowledge Store: MarketsandMarkets’ Subscription Portal 
     14.3. Available Customizations 
     14.4. Related Reports 
     14.5. Author Details 
              
              
       
       
 

Request for detailed methodology, assumptions & how numbers were triangulated.

Please share your problem/objectives in greater details so that our analyst can verify if they can solve your problem(s).
7 9 0 2 1  
Custom Market Research Services

We will customize the research for you, in case the report listed above does not meet with your exact requirements. Our custom research will comprehensively cover the business information you require to help you arrive at strategic and profitable business decisions.

Request Customization
Report Code
UC-SE-6886
Available for Pre-Book
Choose License Type
Prebook Now
  • SHARE
X
Request Customization
Speak to Analyst
Speak to Analyst
OR FACE-TO-FACE MEETING
PERSONALIZE THIS RESEARCH
  • Triangulate with your Own Data
  • Get Data as per your Format and Definition
  • Gain a Deeper Dive on a Specific Application, Geography, Customer or Competitor
  • Any level of Personalization
REQUEST A FREE CUSTOMIZATION
LET US HELP YOU!
  • What are the Known and Unknown Adjacencies Impacting the Al-Driven Predictive Maintenance Market
  • What will your New Revenue Sources be?
  • Who will be your Top Customer; what will make them switch?
  • Defend your Market Share or Win Competitors
  • Get a Scorecard for Target Partners
CUSTOMIZED WORKSHOP REQUEST
knowledgestore logo

Want to explore hidden markets that can drive new revenue in Al-Driven Predictive Maintenance Market?

Find Hidden Markets
  • Call Us
  • +1-888-600-6441 (Corporate office hours)
  • +1-888-600-6441 (US/Can toll free)
  • +44-800-368-9399 (UK office hours)
CONNECT WITH US
ABOUT TRUST ONLINE
©2025 MarketsandMarkets Research Private Ltd. All rights reserved
DMCA.com Protection Status
Website Feedback